就在刚刚过去的周六,
第一批CV Master训练营学员顺利毕!业!啦!
感谢导师们带来干货满满的分享,
也感谢每一位CVer的用心倾听~
我们也收到了来自同学们的大力表扬????????????
(骄傲脸)
那莫,好评如潮的第一期CV Master训练营,
到底有什么魅力?
课代表来给大家总结一下~
三大优势
自研授课平台,与众不同的体验
训练营运用旷视自研MegStudio平台授课,搭载旷视深度学习开源框架天元MegEngine,并为学员提供免费的高级GPU算力以及多卡机资源,相信用自己做出来的平台上课,感受一定大不一样。
强大导师阵容,想学不会都难
曾在CVPR,ICCV,ECCV等会议上发表论文十余篇,并在COCO比赛上作为主力取得了3连冠的黎泽明老师,以及曾在ICDAR的ArT检测任务中作为主力带队获得冠军的王枫老师,带来了深入浅出的课程内容。
理论实践相结合,人人都能成为CV Master
在本期实践课中,王枫老师不仅详细介绍了RetinaNet的核心组件,还带着同学们过代码,实属少有的良心操作!学员们一方面对于RetinaNet结构上的backbone以及head有了更加直观的认识,还能对检测中常见的概念,如anchor产生更深刻的理解。
满满干货
错过本期课程的同学也不要担心,可以一边浏览下方课代表为大家整理的“干货要点”,一边观看我们的课程回看视频(视频地址在下方哦~):
干货笔记一:物体检测经典做法
一阶段物体检测器流程
单阶段的例如SSD、RetinaNet、RefineDet、YOLO,预测出候选框。
二阶段检测器
最大的变化是增加MLP、Crop阶段,基于一阶段结果框,refind出结果集,在物体上抠出结果框所选内容,通过MLP和Crop做进一步回归。
两阶段的例如:R-CNN、SPP-Net、fast R-CNN、Faster R-CNN、R-FCN、Mask R-CNN。
多阶段检测器
把二阶段检测结果,当成候选框。注意MLP不同阶段不共享效果比较好。会提高一些精度。
干货笔记二:RetinaNet模型结构和实现方式要点
1. RetinaNet在物体检测上的Pipeline
要实现一个ResNet-50的backbone,要实现3个卷积组成的bottleneck这一基本组件;
实现了bottleneck之后,接下来就是根据ResNet-50的结构“搭积木”;
有了resnet之后,需要FPN将resnet的输出特征进行融合,可以将FPN看作接受多个特征,然后输出新的多个特征的黑盒;
在FPN的实现中,对于ResNet输出的一个特征图,FPN使用了一个水平方向的1*1卷积和一个进行上采样的方法(未必是卷积);
得到FPN的结果之后,anchor的生成器会根据FPN的输出特征图的大小产生anchor;
最后retinanet的head网络对FPN的特征进行处理,产生实际的预测框和框置信度。
2. Loss部分
Head分类分支常用Loss——Focal loss是RtinaNet论文提出的一个loss,用于解决检测中样本不均衡问题,在RetinaNet中用于anchor的分类。
Head回归分支常用Loss——Smooth L1 Loss是常用于监督box的回归的一个loss,RetinaNet中的回归分支就是使用的这一个loss。
干货笔记三:RetinaNet后处理
1. 对预测图像缩放
每个图像有自己的原始大小,网络预测框的大小是基于resize之后的图像的,为保持一致性,需要根据原始框的大小对预测框进行处理。
2. 处理冗余框
NMS算法——处理冗余框。
输入:box list(每个box包含自身坐标和对应score),阈值T;
输出:keep list。
(1)选取当前最高分的框A,将box list所有与A的iou大于阈值T的框删除;
(2)将A放入keep list中,重复步骤1,直到boxlist为空;
(3)返回keep list。
解锁更多内容,
可前往B站旷视MEGVII平台查看课程原视频
https://www.bilibili.com/video/BV1Xp4y1r7WV
(复制链接到浏览器观看)
彩蛋来啦!课代表还帮大家要到了导师的藏书list,
课程结束后,也要继续学习哟????????????
1.《Grokking Deep Learning》
(Andrew W.Trask)
中文版为《深度学习图解》
2.《深度学习》
(Ian Goodfellow、Yoshua Bengio 、Aaron Courville)
另外,CV Master第二期训练营即将发车~
关注旷视研究院微信,随时获取训练营最新讯息!
下期预告
11.18(三)20:00-21:30 CV Master-识别专题开营
报名方式
添加下方旷视研究院小助手微信
回复“识别”,即可报名
欢迎加入「天元开发者交流 QQ 群」,一起看直播学理论、做作业动手实践、直接与框架设计师交流互动。