ECCV 2020 Oral,利用边界特征做检测的BorderDet

“15分钟看顶会”是旷视研究院全新推出的论文快速解读专栏,聚焦旷视在全球各大顶会、期刊等平台所发表的工作,覆盖深度学习、计算机视觉、视觉导航与控制、计算摄影学、大规模机器学习系统、机器人学等方向。

与传统论文视频解读动辄30min时长不同,本专栏尽可能将时间控制在15分钟左右,以方便读者在日常通勤、等待、出行等时间受限的场景下高效利用碎片化时间进行学习、交流。

欢迎大家和我们一起“深度学习”,也欢迎对这种论文解读方式提出您的宝贵建议。

本期是“15分钟看顶会”专栏 ECCV 2020 论文解读系列的第四篇,旷视研究院提出一种简单、高效的操作“BorderAlign”方法来提取物体边界极限点的特征,并进一步提出一个全新的检测框架“BorderDet”,实现了强大的分类与精准定位效果。

本文已入选 ECCV 2020 Oral 论文。

  • Oral 论文
    BorderDet: Border Feature for Dense Object Detection

  • 论文链接:
     https://arxiv.org/pdf/2007.11056.pdf

  • 论文代码:
    https://github.com/Megvii-BaseDetection/BorderDet

  • 关键词:物体检测、边界特征

物体检测领域,检测器一般会通过滑窗的方式来预测图像网格上的物体,并且还会使用网格中特征点的特征图来生成边界框的预测结果。其中的问题在于,虽然这些点的特征使用起来十分方便,但它们往往可能缺乏有用的边界信息,从而不利于进行精准地定位。因此,本文提出一个简单、高效的操作“BorderAlign”来提取物体边界极限点的特征。

基于BorderAlign,旷视研究院还设计了一个全新的检测框架“BorderDet”。它可以很好地利用边界信息,实现更强大的分类与更精准的定位效果。在ResNet-50 backbone下,模型只增加很少的时间开销,就可以在单阶段检测器FCOS上实现 2.8 AP的性能提升(38.6 v.s. 41.4);在ResNeXt-101-DCN backbone下,本文提出的BorderDet获得50.3 AP,显著超越现有最佳方法。

另外,文字版解读同学们可以参见:

https://zhuanlan.zhihu.com/p/163044323

入群交流

 

传送门 

实习简历请投递至:ur@megvii.com

欢迎大家关注如下 旷视 官方微信号????